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Abstract

We perform a global parton analysis of deep inelastic and related hard-scattering data,

including O(αQED) corrections to the parton evolution. Although the quality of the fit is

essentially unchanged, there are two important physical consequences. First, the different

DGLAP evolution of u and d type quarks introduces isospin violation, i.e. up 6= dn, which

is found to be unambiguously in the direction to reduce the NuTeV sin2 θW anomaly.

A second consequence is the appearance of photon parton distributions γ(x,Q2) of the

proton and the neutron. In principle these can be measured at HERA via the deep inelastic

scattering processes eN → eγX; our predictions are in agreement with the present data.

1Royal Society University Research Fellow.



1 Introduction

Accurately determined parton distributions are an essential ingredient of precision hadron col-

lider phenomenology. In the context of perturbative Quantum Chromodynamics (QCD), the

current frontier is next-to-next-to-leading order (NNLO), but attention has also focused re-

cently on electroweak radiative corrections to hadron collider cross sections. Such corrections

are of course routinely applied in e+e− and ep collider physics, but their application to hadron

colliders is relatively new. They have, for example, been discussed in the context of W and Z

production [1, 2] and of WH and ZH production [3] at hadron colliders.

QED contributions are invariably an important part of such electroweak corrections. In

particular, at hadron colliders large logarithmic α log(Q2/m2) contributions arise from pho-

tons emitted off incoming quark lines, the analogue of the α log(Q2/m2
e) initial-state radiation

corrections familiar in e+e− collisions. One could take these explicitly into account, but this

would require a consistent choice of input quark masses. Furthermore, at the very high Q2

scales probed at hadron colliders, one should in principle resum these logarithms. Fortunately

the QCD factorisation theorem applies also to QED corrections, and as a result such collinear

(photon-induced) logarithms can be absorbed into the parton distributions functions, exactly

as for the collinear αS log Q2 logarithms of perturbative QCD. There are two effects of this:

the normal DGLAP evolution equations are slightly modified — the emmitted photon carries

away some of the quark’s momentum — and a “photon parton distribution” of the proton,

γp(x, Q2), is generated. By correctly taking account of these QED effects through modified

DGLAP evolution equations, we obtain a consistent procedure for dealing with this part of the

overall electroweak correction in all hard-scattering processes involving initial-state hadrons

(see for example [4]).

Indeed, we might naively expect that the O(α) contributions will be as numerically impor-

tant as the O(α2
S) NNLO QCD corrections. The only way to really find out is to perform a full

global parton distribution function analysis with QED corrections included, and to compare

with the results of a standard QCD-only analysis. The first quantitative estimates of the effect

on the evolution of parton distribution functions was made in [5], and a recent investigation

was made in [6]. In fact the effect is found to be small over the bulk of the x range compared

with the effects of including NNLO QCD contributions in the evolution, since even though α3
S

is similar in size to α, the LO QED evolution has none of the large logarithms that accumulate

at higher orders in the QCD corrections. Furthermore, for obvious reasons the gluon evolution

is largely unaffected by the QED corrections.

A deficiency of previous investigations is that they tend to start with a set of standard

partons, obtained from a QCD-only global analysis, and evolve upwards with QED effects

switched on, rather than attempting to consistently determine a completely new set of QED-

corrected partons from an overall best fit to data. We will take this further step in this paper.

Although, as we shall see, the QED corrections have only a very small effect on the evolution

of quarks and gluons, they do have two interesting side effects. First, they necessarily lead to
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isospin violation, i.e. up 6= dn, since the two quark flavours evolve differently when QED effects

are included (unlike gluons, photons are not flavour blind). This is relevant to the NuTeV

measurement of sin2 θW from neutrino- and antineutrino-nucleus scattering, see for example [7]

and [8]. Second, the photon parton distribution may be large enough to be measureable in ep

collisions at HERA, by Compton scattering at wide angle off the electron beam.

In this paper we first discuss the QED-modified DGLAP equations and the form of the

starting distributions at Q0. We then, in Section 4, obtain numerical results for the resulting

set of parton distributions within the framework of the standard MRST NLO and NNLO global

analysis.2 In Section 5 we discuss how the photon parton distribution may be experimentally

measured.

2 DGLAP formalism including QED effects

The factorization of the QED-induced collinear divergences leads to QED-corrected evolution

equations for the parton distributions of the proton. These are (at leading order in both αS

and α)

∂qi(x, µ2)

∂ log µ2
=

αS

2π

∫ 1

x

dy

y

{

Pqq(y) qi(
x

y
, µ2) + Pqg(y) g(

x

y
, µ2)

}

+
α

2π

∫ 1

x

dy

y

{

P̃qq(y) e2
i qi(

x

y
, µ2) + Pqγ(y) e2

i γ(
x

y
, µ2)

}

∂g(x, µ2)

∂ log µ2
=

αS

2π

∫ 1

x

dy

y

{

Pgq(y)
∑

j

qj(
x

y
, µ2) + Pgg(y) g(

x

y
, µ2)

}

∂γ(x, µ2)

∂ log µ2
=

α

2π

∫ 1

x

dy

y

{

Pγq(y)
∑

j

e2
j qj(

x

y
, µ2) + Pγγ(y) γ(

x

y
, µ2)

}

, (1)

where

P̃qq = C−1
F Pqq, Pγq = C−1

F Pgq,

Pqγ = T−1
R Pqg, Pγγ = −2

3

∑

i

e2
i δ(1 − y) (2)

and momentum is conserved:
∫ 1

0
dx x

{

∑

i

qi(x, µ2) + g(x, µ2) + γ(x, µ2)
}

= 1 . (3)

Note that, in principle, we could introduce different factorisation scales for the QCD and

QED collinear divergence subtraction, thus q(x, µ2
F (QCD), µ

2
F (QED)) etc. with separate DGLAP

equations for evolution with respect to each scale, but this is an unnecessary extra complication

that we will ignore and indeed, as is conventional, we will use µ2
F = Q2 for DIS processes.

2Preliminary results from this study have been presented in Ref. [9].
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With the above formalism, it is in principle straightforward to repeat the global NLO or

NNLO (in pQCD) fit. However there is a complication because now we must allow for isospin

symmetry breaking in all the distributions, that is γp 6= γn ⇒ qp 6= qn ⇒ gp 6= gn. This

makes the evolution and fitting significantly more complex, and potentially more than doubles

the number of parameters in the fit, a signficant fraction of which will not be at all well

determined.

Therefore we adopt a simpler approximation which nevertheless contains the essential physics.

Since it turns out that the dominant effect of the QED corrections is the radiation of photons

off high-x quarks we will assume that the isospin-violating effects at the starting scale Q2
0 are

confined to the valence quarks only.

Momentum conservation now reads
∫ 1

0
dx x(up

V + dp
V + γp + S + g) = 1

∫ 1

0
dx x(un

V + dn
V + γn + S + g) = 1 , (4)

where we have assumed that at Q2
0, the sea quarks and gluon are isospin symmetric, i.e. Sp =

Sn = S, gp = gn = g. This symmetry is not preserved by evolution, but is only violated very

weakly.

3 The starting distributions

We next assume that the photon distribution at Q2
0 is that obtained by one-photon emission off

valence (constituent) quarks in the leading-logarithm approximation. This is just a model, of

course, but as long as these distributions are O(α) compared to the starting quark and gluon

distributions, then they have a negligible effect on the quark and gluon evolution. Thus we

take photon starting distributions of the form

γp(x, Q2
0) =

α

2π

[

4

9
log

(

Q2
0

m2
u

)

u0(x) +
1

9
log

(

Q2
0

m2
d

)

d0(x)

]

⊗ 1 + (1 − x)2

x

γn(x, Q2
0) =

α

2π

[

4

9
log

(

Q2
0

m2
u

)

d0(x) +
1

9
log

(

Q2
0

m2
d

)

u0(x)

]

⊗ 1 + (1 − x)2

x
(5)

where u0 and d0 are ‘valence-like’ distributions of the proton that satisfy

∫ 1

0
dx u0 = 2

∫ 1

0
dx d0 = 2 ,

∫ 1

0
dx x(u0 + d0) = 0.5 . (6)

The following functions have the required properties:3

xu0(x) = 1.273
√

x(1 + 6.463x)(1 − x)3 , xd0(x) = 0.775
√

x(1 + 6.463x)(1 − x)4 . (7)

3These model distributions are simply used to determine the starting distributions of the photon. The global

analysis determines the precise forms of uV and dV at Q2

0
.
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Next, we need a model of isospin-violating uV and dV starting distributions. We assume that

the difference dn
V −up

V is described by a numerically small function f(x), whose zeroth moment

vanishes to preserve the valence quark number, and whose first moment is such that momentum

is conserved at Q2
0. Given that we would expect f(x) to have valence-like shape as x → 0 and 1,

a convenient choice is f(x) = ǫ (up
V (x, Q2

0) − 2dp
V (x, Q2

0)) where ǫ is determined by momentum

conservation. Thus

dn
V − up

V = 2(dp
V − un

V ) = ǫ(up
V − 2dp

V )

⇒ dn
V = (1 + ǫ)up

V − 2ǫdp
V

and un
V = (1 + ǫ)dp

V − 1

2
ǫup

V (8)

where the first equality is assumed due to approximately twice as many photons being radiated

from up as un and vice-versa for the d distributions. Taking the difference of the two equations

in Eq. (4) at Q2
0 gives

∫ 1

0
dx x(up

V + dp
V − dn

V − un
V ) =

∫ 1

0
dx x(γp − γn) (9)

and substituting for the neutron distributions from (8) allows ǫ to be determined:

ǫ = 2

∫ 1
0 dx x(γn − γp)

∫ 1
0 dx x(up

V − 2dp
V )

. (10)

For the particular model for γp,n(x, Q2
0) introduced above, it is straightforward to calculate4

the numerator in (10):

∫ 1

0
dx x(γp − γn) =

α

2π

[

4

9
log

(

Q2
0

m2
u

)

0.3573 +
1

9
log

(

Q2
0

m2
d

)

0.1427

]

× 4

3

− α

2π

[

4

9
log

(

Q2
0

m2
u

)

0.1427 +
1

9
log

(

Q2
0

m2
d

)

0.3573

]

× 4

3

=
α

2π

4

27
0.2146

[

4 log

(

Q2
0

m2
u

)

− log

(

Q2
0

m2
d

)]

= 0.00117 . (11)

The denominator in (10) is just the momentum fraction carried by the valence up quarks

minus twice the momentum fraction carried by the valence down quarks in the proton at the

starting scale. For the partons obtained in the new global (NLO pQCD) fit described below,

this difference is 0.0746, and substituting gives ǫ = 0.0325.

Fig. 1 shows the ratio of the starting distributions of the neutron and the proton valence

quarks, i.e. dn
V /up

V and un
V /dp

V , for this value of ǫ. The deviation of these ratios from unity

signals isospin violation in the starting distributions. We see that the result is as expected, with

fewer high-x up-quarks in the proton than down-quarks in the neutron due to increased radia-

tion of photons. Similarly we see the expected excess of down-quarks in the proton compared

to up-quarks in the neutron.

4We take α−1 = 137, current quark masses mu = 6 MeV, md = 10 MeV, and Q2

0
= 1 GeV2.
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Figure 1: The ratio of valence quarks in the neutron and proton at the starting scale, Q2
0 =

1 GeV2, in the NLO global analysis, incorporating the isospin violation described by Eq. (8).

It would be possible to devise other physically motivated models for the differences between

up
V (x, Q2

0) and dn
V (x, Q2

0) and between dp
V (x, Q2

0) and un
V (x, Q2

0), for example we could estimate

the change in a quark distribution between scales m2
q and Q2

0 due to QED evolution to be

∆q(x, Q2
0) =

α

2π

∫ 1

x

dy

y
P̃qq(y) e2

q q(
x

y
, Q2

0) log(Q2
0/m

2
q) , (12)

and make the differences between the input quarks for the proton and the neutron to be

consistent with this. The momentum carried by the photon in the proton and neutron could

then be determined by the momentum lost by each quark due to this contribution. However,

in practice this results in distributions and asymmetries which are very similar to those in our

model, with the essential features being identical. The results are actually much more sensitive

to issues such as the choice of the values of the quark masses.
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4 Global analysis including QED effects

Having defined our procedure for obtaining the QED contribution to the input partons, the

strategy for the fitting procedure is then to

(i) calculate the starting distributions γp(x, Q2
0) and γn(x, Q2

0);

(ii) parametrise the proton’s quark and gluon distributions at Q2
0 in the usual (MRST) way;

(iii) compute ǫ using Eq. (10);

(iv) calculate the neutron starting quark and gluon distributions at Q2
0 by assuming isospin

symmetry for sea quarks and gluons, and isospin-violating valence distributions given by

Eq. (8);

(v) perform the global fit, using separate DGLAP equations for the proton and neutron

partons.

We have performed fits at both NLO and NNLO, where the NNLO fit uses the recently calcu-

lated exact NNLO splitting functions [10, 11]. We use the same input data5 as in the recent

MRST2004 study of Ref. [12]. In both cases the QED corrections do not alter the fit quality

in any significant way. For the NLO fit with QED corrections the χ2 is actually ∼ 15 higher

than that for the standard NLO fit. This increase comes from two sources. The very small

amount of momentum carried by the photon is effectively taken from the gluon – the size of the

input quarks being very well fixed by the data. This conflicts with our usual findings that at

NLO the gluon would actually like more momentum both at high x, in order to fit the jet data,

and at moderate x (∼ 0.1 − 0.01), in order to fit the slope of the HERA and NMC structure

function data. In order to compensate for this loss of gluon the value of αS(M2
Z) increases very

slightly, by about 0.0002, but the fit to the H1 data is still worse by about 8 − 10 units of χ2.

Also, the new mechanism of photon radiation, preferentially from high-x up-quarks, tends to

make F p
2 (x, Q2) fall more quickly with Q2 at high-x, and this is effect is increased by the slight

increase in αS(M2
Z). This makes the fit to the BCDMS proton structure function data 10 units

worse, as this data set prefers a slower fall off with increasing Q2. The fit to all other sources of

data is actually about 5 units better than the standard NLO fit, with the fit to deuterium data

being very slightly improved in general. The overall increase in χ2, whilst being significant,

cannot be taken as evidence that QED effects should be ignored. They are most certainly

present. Rather it highlights the minor shortcomings in the NLO QCD fit, most particularly

the tensions between the gluon and αS.

This conclusion is borne out by the result of the NNLO fit with QED corrections. In this

case the χ2 is lower than for the standard NNLO fit, albeit only by 3 units. At NNLO the

5Note that by using the identical set of data as used in the standard fit we are implicitly assuming that no

QED corrections corresponding to photon emission off incoming quark lines have been applied.
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tensions between the gluon and αS(M2
Z) are much reduced, and the QED corrections do not

cause even minor problems in this respect. Indeed, the value of αS(M2
Z) is essentially unchanged.

The small improvement in χ2 is due to slight improvements in the descriptions of the CCFR

F3(x, Q2) [13], BCDMS F d
2 (x, Q2) [14] and E866 Drell-Yan hydrogen/deuterium ratio data [15],

all of which are sensitive to the isospin violation induced by the QED evolution. In the context

of the overall fit, however, these improvements are too small to draw any definite conclusions.

We can also perform the fit making a different assumption about the light-quark masses.

In particular, we can take the extreme case of constituent-type quark masses of 300 MeV for

both the up and down quarks. From Eq. (5) it is easy to see that this decreases the momentum

carried by the photon at input very significantly, and consequently also decreases the input

isospin asymmetry. In this case ǫ = 0.0074 at Q2
0, to be compared with ǫ = 0.0325 for the

previous (current quark mass) fit. However, the loss of gluon momentum is still generated by

the subsequent evolution, and so this procedure only improves the quality of the NLO fit very

slightly indeed, giving a χ2 of only ∼ 2 lower than the previous fit. At NNLO there is also

an improvement compared to the current quark mass prescription, but even smaller than at

NLO. Hence, there is essentially no evidence from the global fit whether current quark mases

or constituent quark masses are preferred. We will return to this distinction between quark

masses later.

The parton distributions generated in the fit with the current quark masses, which we will

treat as the default fit,6 are shown in Fig. 2. The quark and gluon distributions are all extremely

similar to the standard MRST parton distributions, but it is interesting to note the features of

the new photon distribution. At Q2 = 20 GeV2 it is larger than the b-quark distribution, but

this is because the b quark is being probed not far above the scale (Q2 = m2
b) where it turns

on from zero at NLO. However, the photon distribution is larger than the sea quarks at the

highest values of x. This is presumably because it is generated directly from the radiation off

high-x valence quarks, whereas the sea quarks first branch into gluons which then subsequently

produce sea quarks at even smaller momentum fractions. The photon has a similar shape

to the sea quarks at small x since it is generated via the splitting function Pqγ which gives

a contribution proportional to the size of the quarks at the smallest x values. In Fig. 3 we

show the corresponding figure for the parton distributions in the neutron. The quarks and

gluon are almost indistinguishable from those in the proton, once one interchanges up- and

down-quark distributions, but the photon distribution is smaller at large x, as we would expect

from the decreased charge squared of the dominant valence quarks. The photon distributions

of the proton and neutron become similar at very small x, reflecting the charge symmetry

of the small-x sea quarks. In Fig. 4 we plot the valence-quark differences x(dp
V − un

V ) and

x(up
V − dn

V ) at Q2 = 20 GeV2. This figure illustrates the violation of isospin symmetry in the

momentum carried by the valence quarks particularly clearly. As mentioned earlier, this has

6We believe that current quark masses are more appropriate than constituent quark masses because

photon radiation is an entirely perturbative QED effect which should not be sensitive to the strong scale

or mass of hadrons. The default parton sets, which we denote by MRSTQED04, can be found at

http://durpdg.dur.ac.uk/hepdata/mrs.html
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Figure 2: The parton distributions in the proton at Q2 = 20 GeV2 obtained from the NLO

pQCD + LO QED global fit. The curves for the sea quarks correspond to the ū, d̄, s, c and b

distributions.

important implications for the anomaly in the measurement of sin2 θW reported by NuTeV [7].

The quantity measured, up to corrections due to cuts [7, 18], by NuTeV is

R− =
σν

NC − σν̄
NC

σν
CC − σν̄

CC

. (13)

In the simplest approximation, i.e. assuming an isoscalar target, no isospin violation and equal

strange and anti-strange distributions, this ratio is given by

R− ≈ 1

2
− sin2 θW , (14)

and so the measurement gives a direct determination of sin2 θW . NuTeV find sin2 θW = 0.2277±
0.0013 (stat.) ± 0.0009 (syst.) [7], compared to the global average of 0.2227 ± 0.0004, that is,

roughly a 3σ discrepancy. However, if one allows for isospin violation then the simple expression
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Figure 3: The parton distributions in the neutron at Q2 = 20 GeV2 obtained from the NLO

pQCD + LO QED global fit. The curves for the sea quarks correspond to the ū, d̄, s, c and b

distributions.

(14) becomes modified to

R− =
1

2
− sin2 θW + (1 − 7

3
sin2 θW )

[δUv] − [δDv]

2[V −]
, (15)

where

[δUv] =
∫ 1

0
dx x(up

v(x) − dn
v(x)), [δDv] =

∫ 1

0
dx x(dp

v(x) − un
v(x)), (16)

and [V −] is the overall momentum fraction carried by the valence quarks.

In the extraction of the value of sin2 θW , a correction is made to take account of the elec-

troweak corrections to the cross section. These corrections contain the collinear singularities

absorbed into the QED evolution of partons, and so must not be double-counted. The most

recent calculations of these corrections [16] do factor out the collinear singularities, and are

thus designed to be used with QED-corrected partons. In the electroweak corrections used by
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Figure 4: The difference between the isospin exchanged valence quarks in the proton and the

neutron at Q2 = 20 GeV2.

NuTeV [17] the collinear singularities were regularised by giving the quarks a mass of xmp,

which is rather large for the most important region of high x, and effectively allows less radia-

tion from high x than low x, minimising the isospin-violation effect of QED radiation. Hence,

this procedure should be updated, but there is certainly minimal double counting employed by

using our QED corrected partons even in this case.

Since the isospin violation generated by the QED evolution is precisely such as to remove

more momentum from up-quark distributions than down-quark distributions, it clearly works

in the right direction to reduce the NuTeV anomaly. The effect is also Q2-dependent, since

the quantities in Eq. (16) have a non-zero anomalous dimension. At Q2 = 2 GeV2 we have

[δUv] = −0.002271, [δDv] = 0.001124 and [V −] = 0.4428, leading to a change in the measured

value of sin2 θW of −0.0018, i.e. a little more than 1σ of the total discrepancy is removed.

It is not obvious how this result will change with Q2, since as Q2 increases all the valence

distributions evolve to smaller x and the momentum carried by each will decrease. However,

the isospin-violating component of the evolution is present, and so we might expect an increase

in the effect. Indeed, at Q2 = 20 GeV2 we find [δUv] = −0.002095, [δDv] = 0.001005 and
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[V −] = 0.3501 leading to a change in measured value of sin2 θW of −0.0021. This general trend

continues with increasing Q2, reaching ∆ sin2 θW = −0.0029 at Q2 = 20000 GeV2. These results

are in remarkable agreement with our previous analysis of isospin-violating effects in parton

distributions based on the Lagrange Multiplier method, see Section 5.4 of Ref. [8]. There we

found a shift of δR−

iso = −0.002, with 90% confidence level limits of −0.007 < δR−

iso < +0.007,

comfortably more than needed to explain the NuTeV anomaly.

Hence we conclude that the QED contribution to isospin violation in the valence quarks

has a significant effect in reducing the value of sin2 θW as measured by NuTeV. We note also

that the naive results quoted above need to be corrected for the acceptance cuts made on the

data. Functions for convolving with the parton distributions to take these acceptance effects

into account are provided in [18]. However these do not contain any Q2-dependence, despite

accounting in principle for the momentum fraction carried by the valence quarks, which is

certainly a scale-dependent quantity. Hence we can only estimate that the corrections may

reduce the observed effect by 10 − 20%, see the discussion in Ref. [8]. We also note that the

quoted results can be diminished by a factor of up to about 4 if constituent quark masses of

300 MeV are used instead of current masses – however this option is neither experimentally

nor theoretically favoured.

5 Measuring the photon parton distribution, γ(x, Q2)

The photon parton distributions of the proton and neutron, γp and γn, are a direct and in-

escapable consequence of introducing QED contributions into the DGLAP equations. It is

therefore interesting to speculate how they could be measured directly in experiment. In par-

ticular, such a measurement would test our model assumption for the starting distributions

γ(x, Q2
0) given in Eq. (5).

The most direct measurement of the photon distribution in the proton would appear to be

wide-angle scattering of the photon by a charged lepton beam, thus ep → eγX where the final

state electron and photon are produced with equal and opposite large transverse momentum.

The subprocess is then simply QED Compton scattering, eγ → eγ, and the cross section is

obtained by convoluting this subprocess cross section with γp, see Fig. 5,

σ(ep → eγX) =
∫

dxγ γp(xγ, µ2) σ̂(eγ → eγ) , (17)

where µ is the factorisation scale. If the photon is produced with transverse energy Eγ
T and

pseudorapidity ηγ in the HERA laboratory frame, then simple kinematics gives

xγ =
Eγ

T Ee exp(ηγ)

2EpEe − Eγ
T Ep exp(−ηγ)

, (18)

where Ee and Ep are the energies of the electron and proton beams respectively.
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Figure 5: Schematic diagram for the deep inelastic scattering process ep → eγX, which displays

the convolution of γp and σ̂(eγ → eγ) of (17). Besides the s-channel diagram for eγ → eγ that

is shown, there is also a contribution from the diagram with a virtual u-channel electron.

The ZEUS collaboration [19] has recently published a measurement of this cross section:

σ(ep → eγX) = 5.64 ± 0.58 (stat.)
+0.47

−0.72
(syst.) pb. (19)

in electron-proton collisions7 with
√

s = 300 and 318 GeV. The final state cuts are

5 < Eγ
T < 10 GeV , −0.7 < ηγ < 0.9 ,

Q2 > 35 GeV2 , Ee′ > 10 GeV , 139.8◦ < θe′ < 171.8◦ . (20)

It is noted in [19] that neither PYTHIA nor HERWIG can explain the observed rate (underes-

timating the measured cross section by factors of 2 and 8 respectively) or (all of) the kinematic

distributions in Eγ
T , ηγ and Q2.

Using the proton’s photon parton distribution obtained in the previous section and using

the same cuts as in (20), we find

σ(ep → eγX) = 6.2 ± 1.2 pb. (21)

where the error corresponds to varying the factorisation scale in the range Eγ
T /2 < µ < 2Eγ

T

with µ = Eγ
T taken as the central value. The fact that this ‘parameter-free’ prediction agrees

7In fact, the data sample corresponds to a mix of electron and positron beams, but obviously the corre-

sponding theoretical predictions are identical.
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well with the experimental data lends strong support to our analysis and, in particular, to our

choice of current quark masses in defining the initial photon distribution. As already pointed

out, the photon distribution obtained with constituent quark masses is smaller, and in fact

reduces the theoretical prediction of (21) to 3.6 pb, in disagreement with the measured value.

It would be interesting to extend the ZEUS analysis to make a direct measurement of γp(xγ , Q2)

as a function of xγ, using Eqs. (17,18). In the measurement reported in [19], xγ is sampled in

a fairly narrow range centred on xγ ≃ 0.005.
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